LLM

 
ollmm 运行模型后端open webui 前端输入页面 模型管理unsolth微调模型 fine tuning 输入 json dify llm devoosrag agent fine-tuning cot zero-shot few-shot
 
大模型(Large Language Model,LLM)的浪潮已经席卷了几乎各行业,但当涉及到专业场景或行业细分领域时,通用大模型就会面临专业知识不足的问题。相对于成本昂贵的“Post Train”或“SFT”,基于RAG的技术方案往往成为一种更优选择。
 
资料
学习
术语
模型
prompt
Agent workFlow
LangChain
实践应用流程步骤
其他

发展历程

chinese-llm-benchmark
jeinlee1991Updated Jan 8, 2025
notion image
Large Language Model Meta AI
大型语言模型(LLM)是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络,这些神经网络由具有自注意力功能的编码器和解码器组成。编码器和解码器从一系列文本中提取含义,并理解其中的单词和短语之间的关系。
转换器 LLM 能够进行无监督的训练,但更精确的解释是转换器可以执行自主学习。通过此过程,转换器可学会理解基本的语法、语言和知识。
与早期按顺序处理输入的循环神经网络(RNN)不同,转换器并行处理整个序列。这可让数据科学家使用 GPU 训练基于转换器的 LLM,从而大幅度缩短训练时间。
借助转换器神经网络架构,您可使用非常大规模的模型,其中通常具有数千亿个参数。这种大规模模型可以摄取通常来自互联网的大量数据,但也可以从包含 500 多亿个网页的 Common Crawl 和拥有约 5700 万个页面的 Wikipedia 等来源摄取数据。
Loading...
目录
文章列表
王小扬博客
产品
Think
Git
软件开发
计算机网络
CI
DB
设计
缓存
Docker
Node
操作系统
Java
大前端
Nestjs
其他
PHP