数据结构算法

数据结构
算法

力扣刷题技巧

力扣cn中国、com国际
 
编程逻辑:自顶向下、 《clean book》 红花绿叶
 
skiplist 调表、面试不多、redis中大量使用,为了补足链表的操作 应该是二分查找吧 跳表思想:升维,空间换时间,把一维结构换二维 头、中、尾,然后加更多 索引,一级、二级,增加多级索引,log2n个索引 一般情况下不看内存,看时间 加速核心思想是什么?空间换时间
notion image
notion image
数组的下标寻址十分迅速,但计算机的内存是有限的,故数组的长度也是有限的,实际应用当中的数据往往十分庞大;而且无序数组的查找最坏情况需要遍历整个数组;后来人们提出了二分查找,二分查找要求数组的构造一定有序,二分法查找解决了普通数组查找复杂度过高的问题。任何一种数组无法解决的问题就是插入、删除操作比较复杂,因此,在一个增删查改比较频繁的数据结构中,数组不会被优先考虑
普通链表由于它的结构特点被证明根本不适合进行查找
哈希表是数组和链表的折中,同时它的设计依赖散列函数的设计,数组不能无限长、链表也不适合查找,所以也不适合大规模的查找
二叉查找树因为可能退化成链表,同样不适合进行查找
AVL树是为了解决可能退化成链表问题,但是AVL树的旋转过程非常麻烦,因此插入和删除很慢,也就是构建AVL树比较麻烦
红黑树是平衡二叉树和AVL树的折中,因此是比较合适的。集合类中的Map、关联数组具有较高的查询效率,它们的底层实现就是红黑树。
多路查找树 是大规模数据存储中,实现索引查询这样一个实际背景下,树节点存储的元素数量是有限的(如果元素数量非常多的话,查找就退化成节点内部的线性查找了),这样导致二叉查找树结构由于树的深度过大而造成磁盘I/O读写过于频繁,进而导致查询效率低下。
B树与自平衡二叉查找树不同,B树适用于读写相对大的数据块的存储系统,例如磁盘。它的应用是文件系统及部分非关系型数据库索引。
B+树在B树基础上,为叶子结点增加链表指针(B树+叶子有序链表),所有关键字都在叶子结点 中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中。通常用于关系型数据库(如Mysql)和操作系统的文件系统中。
B*树是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针, 在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3。
R树是用来做空间数据存储的树状数据结构。例如给地理位置,矩形和多边形这类多维数据建立索引。
Trie树是自然语言处理中最常用的数据结构,很多字符串处理任务都会用到。Trie树本身是一种有限状态自动机,还有很多变体。什么模式匹配、正则表达式,都与这有关。

资料

 

复杂度

notion image
notion image
notion image
notion image
Loading...
文章列表
王小扬博客
云原生
Git
Elasticsearch
Apollo
产品
Think
生活技巧
软件开发
计算机网络
CI
DB
设计
缓存
Docker
Node
操作系统
Java
大前端
Nestjs
其他
PHP
AI