模型分类
CivitAI 上的模型主要分为四类:Checkpoint、LoRA、Textual Inversion、Hypernetwork,分别对应 4 种不同的训练方式。
- Checkpoint:通过 Dreambooth 训练方式得到的大模型, 特点是出图效果好,但由于训练的是一个完整的新模型,所以训练速度普遍较慢,生成模型文件较大,一般几个 G,文件格式为 safetensors 或 ckpt。
- LoRA:一种轻量化的模型微调训练方法,是在原有大模型的基础上,对该模型进行微调,用于输出固定特征的人或事物。特点是对于特定风格特征的出图效果好,训练速度快,模型文件小,一般几十到一百多 MB,需要搭配大模型使用。
- Textual Inversion:一种使用文本提示来训练模型的方法,可以简单理解为一组打包的提示词,用于生成固定特征的人或事物。特点是对于特定风格特征的出图效果好,模型文件非常小,一般几十 K,但是训练速度较慢,需要搭配大模型使用。
- Hypernetwork:类似 LoRA,但模型效果不如 LoRA,需要搭配大模型使用。
模型推荐:Checkpoint > LoRA > Textual Inversion > Hypernetwork
通常情况 Checkpoint 模型搭配 LoRA 或 Textual Inversion 模型使用,可以获得更好的出图效果。
补充:还有一类 VAE 模型,简单理解它的作用就是提升图像色彩效果,让画面看上去不会那么灰蒙蒙,此外对图像细节进行细微调整。
Loading...