抖音推荐算法总结b

 
Monolith
火山云卖的智能推荐服务就是基于抖音的推荐算法
Monolith
monolith
bytedanceUpdated Nov 22, 2024
notion image

1. 发布后的推荐流程

第0步:双重审核
在抖音,每天有数量庞大的新作品上传,纯靠机器审核容易被钻空子,纯靠人工审核又不太现实。因此,双重审核成为抖音算法筛选视频内容的第一道门槛。
  • 机器审核(检测是否违规或重复):一般是通过提前设置好的人工智能模型来识别你的视频画面和关键词,它主要有两个关键作用:其一,审核作品、文案中是否存在违规行为,如果疑似存在,就会被机器拦截,通过飘黄、标红等提示人工注意;其二,通过抽取视频中的画面、关键帧,与抖音大数据库中已存在的海量作品进行匹配消重,内容重复的作品进行低流量推荐,或者降权推荐(仅粉丝可见、仅自己可见)。
  • 人工审核(检测标题、封面和关键帧):主要集中在3块:视频标题、封面截图和视频关键帧。针对机器审核筛选出疑似违规作品,以及容易出现违规领域的作品,抖音审核人员进行逐个细致审核。如果确定违规,将根据违规账号进行删除视频、降权通告、封禁账号等处罚。
第一步:冷启动
抖音的推荐算法机制是著名的信息流漏斗算法,也是今日头条的核心算法。通过审核后,第一步叫冷启动流量池曝光,比如你今天上传一个视频,通过双重审核的作品,系统将会分配给你一个初始流量池:200-300在线用户(也可能有上千个曝光)。不论你是不是大号,只要你有能力产出优质内容,就有机会跟大号竞争。
第二步:数据加权
抖音会根据这1000次曝光所产出的数据,结合你账号分值来分析是否给你加权,比如完播率、点赞、关注、评论、转发、转粉、游览深度等。
notion image
以上这些都会对你的短视频数据造成影响,以及对你的短视频作出是否要加权的判断,然后会挑选前10%的视频,再增加1万次曝光。
第三步:加大推荐
这一步会给数据好的短视频进行更大的加权,并且会在第三步强化人群标签分发,让内容分发的更加精准,这类似猜你喜欢的打标,视频是有标签的,用户也是有标签的,两者之间会做标签匹配。
notion image
第四步:进入精品推荐池
进入精品推荐池,大规模曝光,一旦进入精品推荐后,人群标签就被弱化了,就像当年温婉的视频,几乎每个抖音用户都会刷到温婉的视频。

2. 延后“引爆”

不少抖音运营者会发现,有些内容发布的当天、一周甚至一个月内都数据平平,但突然有一天就火了,为什么?两种原因:
第一种,被很多老司机戏称为“挖坟”。它是指抖音会重新挖掘数据库里的“优质老内容”,并给它更多的曝光。这些老作品之所以能被“引爆”,首当其冲是它的内容够好,其次,是你的账号已经发布了很多足够垂直的内容,标签变得更清晰,系统能够匹配给你更精准的用户。优质内容+精准用户,老作品重新火爆起来就不意外了。
第二种,我们可以称之为“爆款效应”,它是指,你的某一个作品在获得大量曝光(几百万,甚至千万级)时,会带来巨量用户进入你的个人主页,去翻看你之前的作品。如果你的某一个作品,能够获得足够多的关注(转评赞),系统将会把这些视频重新放入推荐池。很多垂直内容的创作者,往往都是因为某一个视频的“火爆”,直接把其他几个优质视频“点燃”,形成多点开花,全盘爆炸引流的盛况。

3. 流量触顶

抖音作品经过双重审核、初始推荐、叠加推荐层层引爆之后,通常会给账号带来大量的曝光、互动和粉丝。而这种高推荐曝光的时间,一般不会超过一周。之后,爆款视频乃至整个账号会迅速冷却下来,甚至后续之后发布的一些作品也很难有较高的推荐量。为什么?
抖音每天的日活是有限的,也就是说总的推荐量是基本固定的:一方面,跟你内容相关标签的人群基本完成推荐,其他非精准标签人群反馈效果差,所以停止推荐;另一方面,抖音也不希望某个账号迅速火起来,而是通过一轮轮考验,考验你的内容再创新能力,考验你持续输出优质内容的能力。
Loading...
目录
文章列表
王小扬博客
产品
Think
Git
软件开发
计算机网络
CI
DB
设计
缓存
Docker
Node
操作系统
Java
大前端
Nestjs
其他
PHP