数组和链表
数组
「数组 Array」是一种线性数据结构,其将相同类型元素存储在连续的内存空间中。我们将元素在数组中的位置称为元素的「索引 Index」。
数组初始化
通常有无初始值和给定初始值两种方式,我们可根据需求选择合适的方法。在未给定初始值的情况下,数组的所有元素通常会被初始化为默认值0
优点:在数组中访问元素非常高效。由于数组元素被存储在连续的内存空间中,因此计算数组元素的内存地址非常容易。给定数组首个元素的地址和某个元素的索引,我们可以使用以下公式计算得到该元素的内存地址,从而直接访问此元素。
缺点:数组在初始化后长度不可变。由于系统无法保证数组之后的内存空间是可用的,因此数组长度无法扩展。而若希望扩容数组,则需新建一个数组,然后把原数组元素依次拷贝到新数组,在数组很大的情况下,这是非常耗时的。
数组中插入或删除元素效率低下。如果我们想要在数组中间插入一个元素,由于数组元素在内存中是“紧挨着的”,它们之间没有空间再放任何数据。因此,我们不得不将此索引之后的所有元素都向后移动一位,然后再把元素赋值给该索引
链表
内存空间是所有程序的公共资源,排除已被占用的内存空间,空闲内存空间通常散落在内存各处。在上一节中,我们提到存储数组的内存空间必须是连续的,而当我们需要申请一个非常大的数组时,空闲内存中可能没有这么大的连续空间。与数组相比,链表更具灵活性,它可以被存储在非连续的内存空间中。
「链表 Linked List」是一种线性数据结构,其每个元素都是一个节点对象,各个节点之间通过指针连接,从当前节点通过指针可以访问到下一个节点。由于指针记录了下个节点的内存地址,因此无需保证内存地址的连续性,从而可以将各个节点分散存储在内存各处。
链表「节点 Node」包含两项数据,一是节点「值 Value」,二是指向下一节点的「指针 Pointer」,或称「引用 Reference」。
常见链表
单向链表。即上述介绍的普通链表。单向链表的节点包含值和指向下一节点的指针(引用)两项数据。我们将首个节点称为头节点,将最后一个节点成为尾节点,尾节点指向空 None 。
环形链表。如果我们令单向链表的尾节点指向头节点(即首尾相接),则得到一个环形链表。在环形链表中,任意节点都可以视作头节点。
双向链表。与单向链表相比,双向链表记录了两个方向的指针(引用)。双向链表的节点定义同时包含指向后继节点(下一节点)和前驱节点(上一节点)的指针。相较于单向链表,双向链表更具灵活性,可以朝两个方向遍历链表,但相应地也需要占用更多的内存空间。
应用
单向链表通常用于实现栈、队列、散列表和图等数据结构。
- 栈与队列:当插入和删除操作都在链表的一端进行时,它表现出先进后出的的特性,对应栈;当插入操作在链表的一端进行,删除操作在链表的另一端进行,它表现出先进先出的特性,对应队列。
- 散列表:链地址法是解决哈希冲突的主流方案之一,在该方案中,所有冲突的元素都会被放到一个链表中。
- 图:邻接表是表示图的一种常用方式,在其中,图的每个顶点都与一个链表相关联,链表中的每个元素都代表与该顶点相连的其他顶点。
双向链表常被用于需要快速查找前一个和下一个元素的场景。
- 高级数据结构:比如在红黑树、B 树中,我们需要知道一个节点的父节点,这可以通过在节点中保存一个指向父节点的指针来实现,类似于双向链表。
- 浏览器历史:在网页浏览器中,当用户点击前进或后退按钮时,浏览器需要知道用户访问过的前一个和后一个网页。双向链表的特性使得这种操作变得简单。
- LRU 算法:在缓存淘汰算法(LRU)中,我们需要快速找到最近最少使用的数据,以及支持快速地添加和删除节点。这时候使用双向链表就非常合适。
循环链表常被用于需要周期性操作的场景,比如操作系统的资源调度。
- 时间片轮转调度算法:在操作系统中,时间片轮转调度算法是一种常见的 CPU 调度算法,它需要对一组进程进行循环。每个进程被赋予一个时间片,当时间片用完时,CPU 将切换到下一个进程。这种循环的操作就可以通过循环链表来实现。
- 数据缓冲区:在某些数据缓冲区的实现中,也可能会使用到循环链表。比如在音频、视频播放器中,数据流可能会被分成多个缓冲块并放入一个循环链表,以便实现无缝播放。
列表
数组长度不可变导致实用性降低。在许多情况下,我们事先无法确定需要存储多少数据,这使数组长度的选择变得困难。若长度过小,需要在持续添加数据时频繁扩容数组;若长度过大,则会造成内存空间的浪费。
为解决此问题,出现了一种被称为「动态数组 Dynamic Array」的数据结构,即长度可变的数组,也常被称为「列表 List」。列表基于数组实现,继承了数组的优点,并且可以在程序运行过程中动态扩容。在列表中,我们可以自由添加元素,而无需担心超过容量限制。
排序列表。排序也是常用的方法之一。完成列表排序后,我们便可以使用在数组类算法题中经常考察的「二分查找」和「双指针」算法。
实现
为了帮助加深对列表的理解,我们在此提供一个简易版列表实现。需要关注三个核心点:
- 初始容量:选取一个合理的数组初始容量。在本示例中,我们选择 10 作为初始容量。
- 数量记录:声明一个变量 size,用于记录列表当前元素数量,并随着元素插入和删除实时更新。根据此变量,我们可以定位列表尾部,以及判断是否需要扩容。
- 扩容机制:插入元素时可能超出列表容量,此时需要扩容列表。扩容方法是根据扩容倍数创建一个更大的数组,并将当前数组的所有元素依次移动至新数组。在本示例中,我们规定每次将数组扩容至之前的 2 倍。
Loading...