欧氏距离和余弦

notion image
简单来说,关心数量等大小差异时用欧氏距离,关心文本等语义差异时用余弦相似度。 具体来说,欧氏距离度量的是绝对距离,它能很好地反映出向量的绝对差异。当我们关心数据的绝对大小,例如在物品推荐系统中,用户的购买量可能反映他们的偏好强度,此时可以考虑使用欧氏距离。同样,在数据集中各个向量的大小相似,且数据分布大致均匀时,使用欧氏距离也比较适合。 余弦相似度度量的是方向的相似性,它更关心的是两个向量的角度差异,而不是它们的大小差异。在处理文本数据或者其他高维稀疏数据的时候,余弦相似度特别有用。比如在信息检索和文本分类等任务中,文本数据往往被表示为高维的词向量,词向量的方向更能反映其语义相似性,此时可以使用余弦相似度。
 
Loading...
目录
文章列表
王小扬博客
产品
Think
Git
软件开发
计算机网络
CI
DB
设计
缓存
Docker
Node
操作系统
Java
大前端
Nestjs
其他
PHP