Few-Shot, Zero-Shot & One-shotbb

Zero-shot:Prompt中只给出需要解答的问题。
One-shot:Prompt中除了问题,还给出一个参考题(包含题目和解答)。
Few-shot:与One-shot只给出一个参考题不同,few-shot是给出多个参考题。
先解释 one-shot。公司门禁用了人脸识别,你只提供一张照片,门禁就能认识各个角度的你,这就是 one-shot。可以把 one-shot 理解为用 1 条数据 finetune 模型。在人脸识别场景里,one-shot 很常见。
zero-shot 与 few-shot,回到 NLP 场景。用 wikipedia、新闻等,训练一个 GPT 模型,直接拿来做对话任务,这个就是 zero-shot。然后,发现胡说八道有点多,找了一些人标注了少量优质数据喂进去,这就是 few-shot。
chatGPT 的发展史,就是从 zero-shot 到 few-shot。(摘自沐神的 paper reading 系列)
  1. 背景。GPT-3 之前,跟 Bert 是两条路线的竞争关系。
  1. GPT-2 是 zero-shot。效果没有超过 bert,又想发 paper,就把自己的卖点定义为 zero-shot(方法创新),即完全的无监督学习,论文的题目:Language Models are Unsupervised Multitask Learners。
  1. GPT-3 是 few-shot。效果比 bert 好,不用找学术方法的卖点了,而且,zero-shot 做产品的性价比确实不高,换成了 few-shot,也就是找了一些人做标注。论文的题目:Language Models are Few-Shot Learners。
  1. chatGPT 是 HFRL。GPT-3 之后的问题是:few-shot 时到底 shot 啥(标注哪些数据)?他们跟强化学习结合起来,也就是 human feedback reenforcement learning,俗称 HFRL。也就是 chatGPT 的核心技术。
Loading...
目录
文章列表
王小扬博客
产品
Think
Git
软件开发
计算机网络
CI
DB
设计
缓存
Docker
Node
操作系统
Java
大前端
Nestjs
其他
PHP