为什么我们要用大模型

为什么大型语言模型如此重要?

大型语言模型非常灵活。一个模型可以执行完全不同的任务,例如回答问题、总结文档、翻译语言和完成语句。LLM 有可能破坏内容创作以及人们使用搜索引擎和虚拟助手的方式。
尽管并不完美,但 LLM 表现出根据相对较少量的提示或输入做出预测的非凡能力。LLM 可用于生成式人工智能,以根据采用人类语言的输入提示生成内容。
LLM 非常庞大。它们可以考虑数十亿个参数,并且有许多可能的用途。下面是一些示例:
  • Open AI 的 GPT-3 模型有 1750 亿个参数。类似的产品 ChatGPT 可以从数据中识别模式并生成自然且可读的输出。虽然我们不知道 Claude 2 的规模,但该模型可以在每个提示中输入多达 10 万个令牌,这意味着它可以处理数百页的技术文档,甚至可以处理整本书。
  • AI21 Labs 的 Jurassic-1 模型具有 1780 亿个参数和由 25 万单词部分组成的令牌词汇表以及类似的对话功能。
  • Cohere 的 Command 模型具有类似的功能,并且可以使用 100 多种不同的语言开展工作。
  • LightOn 的 Paradigm 提供根基模型,并且宣称该模型的功能超过 GPT-3。所有这些 LLM 都带有 API,可让开发人员打造独特的生成式人工智能应用程序。
再偏专业领域,大模型有六十到七十的成功概率;(经过考试题测试)
对考试题已经可以轻松到 985 211 水平,不用能行么?
Loading...
目录
文章列表
王小扬博客
产品
Think
Git
软件开发
计算机网络
CI
DB
设计
缓存
Docker
Node
操作系统
Java
大前端
Nestjs
其他
PHP